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ABSTRACT. For sequences of warped product metrics on a 3-torus satisfying the scalar curvature bound
Rj ≥ − 1

j
, uniform upper volume and diameter bounds, and a uniform lower area bound on the smallest

minimal surface, we find a subsequence which converges in both the Gromov-Hausdorff (GH) and the
Sormani-Wenger Intrinsic Flat (SWIF) sense to a flat 3-torus.

INTRODUCTION

The Scalar Torus Rigidity Theorem states that any Riemannian manifold which is diffeomorphic to
an n-dimensional torus and which has nonnegative scalar curvature is isometric to a flat torus. It is
called a rigidity theorem because it is a theorem which forces a Riemannian manifold to have a rigid
structure: in this case to be isometric to a flat torus. This theorem was proven for dimension n = 3 by
Schoen and Yau in 1979 [SY79], using results from minimal surface theory that can now be extended
to higher dimensions. Gromov and Lawson gave a proof in all dimensions using the Lichnerowicz
formula in [GL80].

Recently, Gromov suggested that sequences of manifolds diffeomorphic to tori with almost non-
negative scalar curvature and appropriate compactness conditions should converge to flat tori [Gro14].
By work of Gromov [Gro14] and of Bamler [Bam16], if one assumes additional conditions on the
metric tensors to guarantee that they converge in the C0 sense then one can obtain C0 convergence
of this sequence of tori with almost non-negative scalar curvature to flat tori. Since there are known
examples of sequences without these additional hypotheses which do not converge in the C0 or even
Gromov-Hausdorff (GH) sense it was suggested by Gromov that the conjecture should be in terms
of Sormani-Wenger Intrinsic Flat (SWIF) convergence. In [Sor17], Sormani formulated a precise
conjecture for such a sequence of tori with almost non-negative scalar curvature as follows.

Conjecture 0.1. Let Mj = (T3, gj) be a sequence of Riemannian manifolds diffeomorphic to a 3-torus
such that

Rj ≥ −1

j
, Vol(Mj) ≤ V0, Diam(Mj) ≤ D0 and MinA(Mj) ≥ A0 > 0,(0.1)

where Rj is the scalar curvature and MinA(Mj) is the area of the smallest closed minimal surface in

Mj . Then, there is a subsequence of Mj converging in the SWIF sense to a flat torus: Mjk
SWIF−→ M∞,

where M∞ is a flat torus.

Note that if any of the assumed conditions on the sequence in this conjecture are relaxed, then there
are known counterexamples. The uniform volume and diameter bounds are necessary to prevent ex-
pansion and collapsing. The MinA condition is necessary to prevent bubbling and “sewing” examples
which would otherwise provide counterexamples to this conjecture [BDS18]. The MinA condition is
natural in this setting given the crucial role that stable minimal surfaces played in Schoen-Yau’s proof
of the torus rigidity theorem [SY79]. Also, the MinA condition has appeared in the rigidity results
of Bray, Brendle and Neves [BBN10] for area minimizing 2-spheres in 3-spheres and Bray, Brendle,
Eichmair and Neves [BBEN10] for area minimizing projective planes in 3-manifolds.

Moreover, there are counterexamples to Conjecture 0.1 if SWIF convergence is replaced with GH
convergence. Basilio and Sormani constructed sequences of tori satisfying the hypotheses of this
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conjecture with no GH limit and a GH limit to a non-smooth space that is not the flat torus [BS17].
These examples have increasingly thin wells with positive scalar curvature surrounded by an annular
region with Rj ≥ −1

j . Since thin wells disappear under SWIF convergence, these examples converge
in the SWIF sense. On the other hand, all of their examples converge in SWIF sense to a flat torus.

The first paper to apply SWIF convergence in the setting of positive scalar curvature was the paper
by Lee and Sormani [LS14] where sequences of rotationally symmetric, asymptotically flat manifolds
with ADM mass tending to zero are shown to converge to regions in Euclidean space under SWIF
convergence. In this case there are counterexamples given by Lee and Sormani where sequences
with the properties above do not converge under GH convergence and hence SWIF convergence is
essential. This informs the intuition that SWIF convergence is well suited for convergence questions
where positive scalar curvature is natural. This intuition inspires the use of SWIF convergence in
Conjecture 0.1 and is reinforced by the results of this paper.

In this paper, we will prove Conjecture 0.1 in the setting where the metrics are assumed to be
warped product metrics. This setting was first suggested by Sormani after formulating Conjecture
0.1 [Sor17]. We find a subsequence which converges in both SWIF and GH sense and we note that a
subsequence is necessary because the sequence could have subsequences converging to different flat
tori. It is perhaps surprising that we obtain GH convergence as this means that our sequences are not
developing long thin wells as in the examples in [BS17].

In particular, we are going to consider the following two special cases:
(i) Doubly Warped Products: For x, y, z ∈ [−π, π] and positive aj , bj : [−π, π] → R, the metric

(0.2) gj = a2j (z)dx
2 + b2j (z)dy

2 + dz2,

is a doubly warped product.
(ii) Singly Warped Products: For x, y, z ∈ [−π, π] and positive fj : [−π, π]× [−π, π] → R, the metric

(0.3) gj = dx2 + dy2 + f2
j (x, y)dz

2,

is a singly warped product.

Throughout the rest of this paper, by “doubly warped product” we will be referring to item (i) above
and by “singly warped product” we will be referring to item (ii) above. Now, we state our main result
for doubly warped products.

The main result for doubly warped products:

Theorem 0.2. Suppose we have a sequence Mj = (T3, gj), where each gj is a doubly warped product
satisfying

(0.4) Rj ≥ −1

j
, Diam(Mj) ≤ D0, and MinA(Mj) ≥ A0 > 0,

then there exists a subsequence Mjk converging uniformly to a flat torus. In particular, Mjk converges
in the GH and SWIF sense to a flat torus.

To prove Theorem 0.2, we first show in Theorem 2.6 that the scalar curvature bound allows us to
find subsequences of the warping functions that converge to nonzero constants in W 1,2(S1). A key
step in obtaining these convergent subsequences is the existence of upper and lower uniform bounds
on the warping functions found in Proposition 2.5. We show these bounds can be derived from the
MinA and diameter bounds in the hypotheses of our theorem. It then follows from Morrey’s inequality
for one dimensional domains that in fact we have C0, 1

2 convergence. From here we obtain uniform,
GH, and SWIF convergence. Note that we did not use a uniform volume bound, yet this is necessary
for Conjecture 0.1 to hold in general.

The main result for singly warped products:
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Theorem 0.3. Suppose we have a sequence Mj = (T3, gj), where gj is a singly warped product
satisfying

(0.5) Rj ≥ −1

j
, Vol(Mj) ≤ V0, and MinA(Mj) ≥ A0 > 0,

Then, there exists a subsequence Mjk converging uniformly to a flat torus. In particular, Mjk con-
verges in the GH and SWIF sense to a flat torus.

To prove Theorem 0.3, we find in Lemma 3.6 a subsequence of the warping functions fj that
converges to a positive constant in W 1,1(T2). Completely different techniques than those of Theorem
0.2 are used. The proof involves using the Moser-Trudinger inequality in Proposition 3.5 to gain an
Lp bound, p > 2, on fj , combined with control obtained from the MinA lower bound in Lemma
3.3. Then, we use a maximum principle on a certain operator to obtain C0 control from below on the
warping functions in Corollary 3.9, which then allows us to appeal to a result of the first named author
to find that a subsequence has the desired convergence to a flat torus [All21]. Note that we do not use
a uniform diameter bound.

We now give a brief outline of the paper: In Section 1 we describe the definitions and previous
theorems which will be essential to understanding the results of this paper. In the interest of keeping
the background concise we offer up references to interesting definitions and results which are not
essential to understanding the main results of this paper. In Section 2 the proof of Theorem 0.2 is
given and in Section 3 the proof of Theorem 0.3 is given. In both sections many interesting estimates
are developed which give potential insight into the full conjecture 0.1.
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1. BACKGROUND

In this section, we review some basic definitions and facts that will be used throughout the paper.
We start by reviewing the notion of uniform convergence of metric spaces. Consider two metric

spaces (X, d1), (X, d2) and define the uniform distance between these metric spaces to be

dunif (d1, d2) = sup
x,y∈X

|d1(x, y)− d2(x, y)|.(1.1)

Notice that if you think of the metrics as functions, di : X × X → R, then the uniform distance
dunif (d1, d2) is equivalent to the C0 distance between functions. We say that a sequence of metrics
spaces (X, dj) converges to the metric space (X, d∞) if dunif (dj , d∞) → 0 as j → ∞.

One limitation of uniform convergence is that it requires the metric spaces to have the same topol-
ogy and so other important notions of convergence have been introduced which do not depend on
topology. Two particularly important notions of convergence for metric spaces and Riemannian
manifolds are Gromov-Hausdorf (GH) convergence and Sormani-Wenger Intrinsic Flat convergence
(SWIF). In this paper we will be able to show GH and SWIF convergence but due to the symmetries of
the metrics assumed we will also be able to show uniform convergence and so we will not define these
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notions in this paper. For the definition of GH convergence see [BBI01] and the references therein.
For the definition of SWIF convergence see [SW11].

In the case of doubly warped products we will be able to show C0, 1
2 convergence of the warping

functions aj(z), bj(z) to constants in section 2. We will then wrap up the proof of Theorem 0.2 by
applying the following corollary of Proposition 3.7 in [Gro07], for the case of GH convergence, and a
corollary of Theorem 5.6 in [SW11], for the case of SWIF convergence.

Corollary 1.1. If a sequence of Riemannian manifolds Mj = (M, gj) converges to the Riemannian
manifold M∞ = (M, g∞) in the C0,α sense then Mj converges in GH and SWIF to M∞ as well.

It is important to note that showing C0,α convergence of the warping functions is equivalent to
showing C0,α convergence of the Riemannian manifolds in the doubly warped product case.

In the singly warped product case we will not be able to show C0, 1
2 convergence of the warping

functions but instead will be able to show Lp convergence for p > 2 and C0 convergence from below.
By combining these estimates with Theorem 1.4 of [All21] we will be able to conclude uniform, GH,
and SWIF convergence. We now move on to produce the estimates needed to apply Corollary 1.1 and
Theorem Theorem 1.4 of [All21] in order to prove Theorem 0.2 in section 2 and prove Theorem 0.3
in section 3.

2. DOUBLY WARPED PRODUCTS OF ONE VARIABLE

In this section, we will prove Theorem 0.2. Recall that we are considering a sequence of dou-
bly warped product metrics gj on T3 such that x, y, z ∈ [−π, π] and aj , bj : [−π, π] → R positive
functions, and

(2.1) gj = a2j (z)dx
2 + b2j (z)dy

2 + dz2.

2.1. Scalar Curvature of Doubly Warped Products. In order to prove Theorem 0.2 we will need
to find an expression for the scalar curvature of a doubly warped product. The resulting differential
inequality from Rj ≥ −1

j will be key to showing the desired convergence.

Lemma 2.1. The scalar curvature for a metric g = a(z)2dx2 + b(z)2dy2 + dz2 on T3 is

(2.2) R = −2

(
a′′

a
+

b′′

b
+

a′b′

ab

)
.

Proof. By Section 4.2.4 of Petersen’s book [Pet16], a metric of this form has the following Ricci
curvature.

Ric
(

∂

∂x

)
=

(
−a′′

a
− a′b′

ab

)
∂

∂x
(2.3)

Ric
(

∂

∂y

)
=

(
−b′′

b
− a′b′

ab

)
∂

∂y
(2.4)

Ric
(

∂

∂z

)
=

(
−a′′

a
− b′′

b

)
∂

∂z
(2.5)

Thus, we have the conclusion of this lemma. □

This lemma means that under the conditions of Theorem 0.2, the condition Rj ≥ −1
j translates

into the following condition on aj and bj

(2.6)
a′′j
aj

+
b′′j
bj

+
a′jb

′
j

ajbj
≤ 1

2j
.
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2.2. Diameter Bounds, the MinA Condition and Uniform Bounds. We will now investigate the
consequences of the MinA hypothesis, with a particular emphasis on how this translates into natural
lower and upper bounds for the warping functions. We start with the so-called MinA condition,
according to which the smallest possible area of a closed minimal surface in Mj is bounded from
below by a certain constant:

(2.7) MinA(Mj) = inf{Area(Σ)| Σ is a closed minimal surface in Mj} ≥ A0 > 0.

Notice that this lower bound is uniform in j. Intuitively speaking, this condition allows us to control
better the geometry of the Mj’s, for instance by avoiding bubbling phenomena and sewing coun-
terexamples. What’s more, a careful analysis of these pathological construction yields that the MinA
hypothesis is not only a simplification of the problem but also a rather natural notion. For further
details on those examples where MinA(Mj) → 0 we refer to [BS17]. A notion related to the MinA
hypothesis has been used by Bray, Brendle and Neves, in [BBN10], to prove a cover splitting rigidity
theorem and by the same authors with Eichmair, in [BBEN10], to prove a rigidity theorem concerning
RP3.

Our first result is that (2.1) yields a pointwise lower bound, independent of j, on the product
aj(z)bj(z) and uniform lower bounds on the integrals of aj and bj .

Lemma 2.2. Let Mj = (T3, gj) as in (2.1). If MinA(Mj) ≥ A0, then for all z ∈ [−π, π],

aj(z)bj(z) ≥
A0

4π2
(2.8) ˆ π

−π
aj(z)dz ≥ A0

2π
,(2.9)

ˆ π

−π
bj(z)dz ≥ A0

2π
.(2.10)

Proof. Consider the three homotopy classes

(2.11) [x, y, 0) : x, y ∈ S1], [(x, 0, z) : x, z ∈ S1] and [(0, y, z) : z, y ∈ S1],

in the three dimensional torus T3. These are just the homotopy classes of two dimensional tori in
our manifold. By a result of Schoen-Yau [SY79], we can find a minimal surface in each of these
homotopy classes. So, if ϕz=0(x, y) : T2 → Mj is the embedding of the representative (x, y, 0) into
our manifold Mj , its area satisfies

(2.12) Area(ϕz=0(x, y)) ≥ MinA(Mj) ≥ A0 > 0

Similarly,

(2.13) Area(ϕx=0(z, y)) ≥ A0 > 0,

(2.14) Area(ϕy=0(x, y)) ≥ A0 > 0.

Let ω be the 2-form aj(z)bj(z)dx ∧ dy obtained by contracting the volume form with ∂
∂z . Then

Area(ϕz=0(x, y)) =

ˆ π

−π

ˆ π

−π
ϕ∗
z=0(ω) =

ˆ π

−π

ˆ π

−π
aj(0)bj(0)dxdy = 4π2aj(0)bj(0).(2.15)

Observe that we could have chosen any other z-level set. For any z0,

(2.16) aj(z0)bj(z0) ≥
Area(ϕz=z0(x, y))

4π2
≥ A0

4π2

This establishes the first part of the theorem.
For the other two parts of the theorem, we just compute the areas of the embeddings ϕx=0 and ϕy=0

and apply the same argument as above. The computations here give

Area(ϕx=0(y, z)) =

ˆ π

−π

ˆ π

−π
bj(z)dydz = 2π

ˆ π

−π
bj(z)dz(2.17)
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and

Area(ϕy=0(x, z)) =

ˆ π

−π

ˆ π

−π
aj(z)dxdz = 2π

ˆ π

−π
aj(z)dz.(2.18)

Therefore we can find constants C1, C2 giving the last two estimates in the theorem. □

We now investigate the diameter bound Diam(Mj) ≤ D0 and find uniform upper and lower bounds
for aj and bj . In doing so, we need the following two lemmas regarding the warping functions
a(z), b(z) on a fixed Mj .

Lemma 2.3. Let Mj = (T3, gj) as in (2.1). If Mj has diameter Diam(Mj) ≤ D0, then

(2.19) min
z∈[−π,π]

aj(z) ≤ D0 and min
z∈[−π,π]

bj(z) ≤ D0,

Proof. Consider two points on the torus P1 = (0, 0, 0) and P2 = (1, 0, 0). For t ∈ [0, 1], let Γ(t) =
(x(t), y(t), z(t)) be the minimal geodesic with Γ(0) = P1 and Γ(1) = P2. We may think of Γ(t) as a
path in R3 starting at (0, 0, 0) and ending at (1 + 2πn1, 2πn2, 2πn3) for some n1, n2, n3 ∈ Z. Thus,

(2.20) 1 ≤
∣∣∣∣ˆ 1

0
x′(t)dt

∣∣∣∣ .
Now, let z1 be such that aj(z1) = minz∈[−π,π] aj(z), which is positive by assumption (2.1). Note that
z1 depends on j. Then,

min
z∈[−π,π]

aj(z) = aj(z1) ≤ aj(z1)

∣∣∣∣ˆ 1

0
x′(t)dt

∣∣∣∣(2.21)

≤
ˆ 1

0
aj(z1)

∣∣x′(t)∣∣ dt(2.22)

≤
ˆ 1

0

√
aj(z1)2x′(t)2 + bj(z(t))2y′(t)2 + z′(t)2dt(2.23)

≤
ˆ 1

0

√
aj(z(t))2x′(t)2 + bj(z(t))2y′(t)2 + z′(t)2dt(2.24)

= Length(Γ) ≤ Diam(Mj) ≤ D0(2.25)

We may do the same for bj using a minimal geodesic connecting (0, 0, 0) and (0, 1, 0). □

Lemma 2.4. Let Mj = (T3, gj) as in (2.1). If Rj ≥ −1
j , then the functions αj(z) := ln(aj(z)) and

βj(z) := ln(bj(z)) satisfy

(2.26)
ˆ π

−π
α′
j
2
dz ≤ 2π

j
and

ˆ π

−π
β′
j
2
dz ≤ 2π

j
.

Proof. From Lemma 2.2 and Rj ≥ −1
j , we have

(2.27) Rj =
a′′j
aj

+
b′′j
bj

+
a′jb

′
j

ajbj
≤ 1

2j

Now, we compute the derivatives of αj and βj .

(2.28) α′
j =

a′j
aj

, α′′
j =

a′′j
aj

−
a′j

2

aj
, β′

j =
b′j
bj

and β′′
j =

b′′j
bj

−
b′j

2

b2j

Substituting into (2.27) above inequality we have

(2.29) α′′
j + β′′

j + α′
j
2
+ β′

j
2
+ α′

jβ
′
j ≤

1

2j
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Since αj and βj are periodic, we may integrate this inequality to find

(2.30)
ˆ π

−π
α′
j
2
+ β′

j
2
+ α′

jβ
′
j dz ≤ π

j

(2.31)
ˆ π

−π
α′
j
2
+ β′

j
2
dz ≤ π

j
−
ˆ π

−π
α′
jβ

′
jdz

Rewriting and then integrating (2.27),

(2.32)
(ajbj)

′′ − a′jb
′
j

ajbj
≤ 1

2j

(2.33)
ˆ π

−π

a′jb
′
j

ajbj
dz ≥

ˆ π

−π

(ajbj)
′′

ajbj
dz − π

j

Now, since ajbj is periodic,

(2.34) 0 =

ˆ π

−π
ln(ajbj)

′′dz =

ˆ π

−π

(ajbj)
′′

ajbj
− (ajbj)

′2

(ajbj)2
dz

Applying this identity to (2.33),

(2.35)
ˆ π

−π

a′jb
′
j

ajbj
dz ≥

ˆ π

−π

(ajbj)
′′

ajbj
dz − π

j
=

ˆ π

−π

(ajbj)
′2

(ajbj)2
dz − π

j
≥ −π

j

Using the definition of α′
j and β′

j and applying (2.35) to (2.31),

(2.36)
ˆ π

−π
α′
j
2
+ β′

j
2
dz ≤ π

j
−
ˆ π

−π
α′
jβ

′
jdz =

π

j
−
ˆ π

−π

a′jb
′
j

ajbj
dz ≤ 2π

j

Thus, we have the desired bounds. □

We now come to the most important result of this section:

Proposition 2.5. Let Mj = (T3, gj) as in (2.1). If Rj ≥ −1
j , Diam(Mj) ≤ D0, and MinA(Mj) ≥

A0 > 0, then there exist positive constants A,A′, B,B′ independent of j such that
A0

4π2D0
e
− 2π√

j ≤ aj(z) ≤ D0e
2π√
j(2.37)

A0

4π2D0
e
− 2π√

j ≤ bj(z) ≤ D0e
2π√
j(2.38)

for all z ∈ S1.

Proof. Using the notation of Lemma 2.4, we apply Cauchy-Schwarz and Lemma 2.4.

(2.39)
ˆ π

−π
|α′

j(z)|dz ≤

√ˆ π

−π
|α′

j(z)|2dz

√ˆ π

−π
dz ≤ 2π√

j

(2.40)
ˆ π

−π
|β′

j(z)|dz ≤

√ˆ π

−π
|β′

j(z)|2dz

√ˆ π

−π
dz ≤ 2π√

j

So,

ln

(
max(aj)

min(aj)

)
= max(αj)−min(αj) ≤

ˆ π

−π
|α′

j(z)|dz ≤ 2π√
j
,

ln

(
max(bj)

min(bj)

)
= max(βj)−min(βj) ≤

ˆ π

−π
|β′

j(z)|dz ≤ 2π√
j

(2.41)
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By combining with Lemma 2.3,

max(aj) ≤ e
2π√
j min(aj) ≤ D0e

2π√
j ,

max(bj) ≤ e
2π√
j min(bj) ≤ D0e

2π√
j

(2.42)

By Lemma 2.2, min(ajbj) ≥ A0
4π2 . Then, combining (2.19) with (2.42), we get a uniform upper and

lower bound for aj and bj as follows

min(aj) ≥
min(ajbj)

max(bj)
≥ A0

4π2D0
e
− 2π√

j ,

min(bj) ≥
min(ajbj)

max(aj)
≥ A0

4π2D0
e
− 2π√

j

(2.43)

Thus, we have the desired uniform upper and lower bounds on aj and bj . □

2.3. W 1,2 Convergence and Proof of the Main Result. In this section we are going to use the
bounds on the warping functions to prove that they converge to constants in W 1,2. We then use
Morrey’s inequality to show this implies C0, 1

2 convergence.

Theorem 2.6. Let Mj = (T3, gj) as in (2.1). If Rj ≥ −1
j , Diam(Mj) ≤ D0, and MinA(Mj) ≥

A0 > 0, then there exist nonzero constants a∞, b∞ such that, after possibly passing to a subsequence,
ai → a∞, bi → b∞ in W 1,2(S1).

Proof. Using the notation of Lemma 2.4, we apply the Poincaré-Wirtinger inequality and use Lemma
2.4 to obtain the limit as j → ∞

∥αj − ᾱj∥2 = ∥αj −
1

2π

ˆ π

−π
αjdz∥2 ≤ C∥α′

j∥2 → 0(2.44)

∥βj − β̄j∥2 = ∥βj −
1

2π

ˆ π

−π
βjdz∥2 ≤ C∥β′

j∥2 → 0,(2.45)

where C is a constant independent of j and ᾱj and β̄j denote the averages of αj and βj respectively.
From here on, we consider only the functions αj as the arguments are identical for both αj , βj .

After passing to a subsequence, the above shows that we have a limiting function α∞ so that

(2.46) αjk → α∞ in W 1,2(S1)

where α∞ is a constant by the fact that

(2.47)
ˆ π

−π
|α∞ − ᾱjk |

2dz ≤
ˆ π

−π
|α∞ − αjk |

2 + |αjk − ᾱjk |
2dz → 0 as j → ∞.

Now, by Proposition 2.4, there are positive constants A,A′ such that A ≤ aj ≤ A′, thus

(2.48)
ˆ π

−π
αjdz =

ˆ π

−π
ln(aj)dz ≤

ˆ π

−π
ln(A′)dz = 2π ln(A′)

and

(2.49) 2π ln(A) =

ˆ π

−π
ln(A)dz ≤

ˆ π

−π
αjdz

So, the averages ᾱj cannot get arbitrarily large or arbitrarily small as i → ∞. In particular, α∞ is a
positive constant.

Now that we have found subsequences αjk and βjk converging to some nonzero constants α∞ and
β∞, respectively, in W 1,2(S1), we can define a∞ = eα∞ , b∞ = eβ∞ to obtain subsequences of aj , bj
converging to nonzero constants a∞, b∞ in W 1,2(S1). □

We are now ready to prove our main result for doubly warped products.
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Proof of Theorem 0.2. By Theorem 2.6, we have that a subsequence of aj and bj converges in W 1,2

to constants a∞ and b∞. Applying Morrey’s inequality for one-dimensional domains gives that a
subsequence of aj and bj converges in C0, 1

2 . Note that constant warping functions a∞, b∞ mean
that the metric is flat. So, a subsequence of Mj converges in C0, 1

2 to a flat torus. In particular, a
subsequence GH and SWIF converges to a flat torus by Corollary 1.1.

□

3. SINGLY WARPED PRODUCTS OF TWO VARIABLES

In this section we will prove Theorem 0.3. Recall that we are considering a sequence of singly
warped product metrics gj on T3 such that for x, y, z ∈ [−π, π] and positive fj : [−π, π]× [−π, π] →
R, gj can be written as

(3.1) gj = dx2 + dy2 + f2
j (x, y)dz

2.

The singly warped product case is substantially different than the doubly warped product case
because fj is a function of two variables. This means we will not be able to apply Morrey’s inequality
to go from W 1,2 convergence to C0,α convergence as we were able to do for doubly warped products.

3.1. Scalar Curvature. We first analyze the partial differential inequality on the warping function
obtained from Rj ≥ −1

j .
Applying the calculations of Dobarro and Dozo, we may find an expression for the scalar curvature

of a singly warped product on T3 [DD87].

Lemma 3.1. The scalar curvature for a metric g = dx2 + dy2 + f2(x, y)dz2 on T3 is

(3.2) R = −2
∆f

f

where ∆ is the Euclidean Laplacian.

Remark 3.2. If we further assume that the Mj’s are scalar flat, i.e. ∆fj
fj

= 0 then the maximum
principle shows that the warping functions must be constant. This is one way to see that scalar flat
3-tori with a singly warped product metric are isometric to a flat torus.

Lemma 3.1 means that the assumption on scalar curvature in Theorem 0.3 translates into the fol-
lowing inequality for the warping functions:

(3.3)
∆fj
fj

≤ 1

2j

3.2. Minimal Surfaces, the MinA Condition and Uniform Bounds. In this section we investigate
the MinA condition in a similar fashion as in Subsection 2.2 in order to obtain important bounds on
fj which will be used in later subsections. More precisely we will be able to prove that the MinA
lower bound yields uniform lower bounds on the simple integrals of fj(x0, y) and fj(x, y0), and on
the double integral of fj(x, y).

Lemma 3.3. Let Mj = (T3, gj) as in (3.1). If MinA(Mj) ≥ A0 > 0, thenˆ π

−π

ˆ π

−π
fj(x, y)dxdy ≥ A0,(3.4)

ˆ π

−π
fj(x0, y)dy ≥ A0

2π
for all x0 ∈ [−π, π],(3.5)

ˆ π

−π
fj(x, y0)dx ≥ A0

2π
for all y0 ∈ [−π, π].(3.6)
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Proof. The proof is exactly as in Lemma 2.2. The areas of the embeddings ϕx=x0 , ϕy=y0 in this case
are

Area(ϕx=x0) = 2π

ˆ π

−π
fj(x0, y)dy,(3.7)

and

Area(ϕy=y0) = 2π

ˆ π

−π
fj(x, y0)dx.(3.8)

The first bound follows by integrating either of the bounds above. □

3.3. W 1,2 Convergence of hj . Define the sequence {hj} by hj(x, y) := ln(fj(x, y)), for every
j ∈ N. Note that these functions are defined on T2 = [−π, π] × [−π, π], since they are periodic in x
and y. Moreover, define h̄j to be the average of hj over the torus T2, i.e.

(3.9) h̄j =
1

|T2|

ˆ
T2

hj dA

where |T2| = 4π2 and dA = dxdy. The averages h̄j cannot get arbitrarily large due to the following
control inequalities.ˆ

T2

hjdA =

ˆ
T2

ln(fj)dA ≤ ln

(ˆ
T2

fjdA

)
≤ ln(Vol(Mj)) ≤ ln(V0).(3.10)

We now calculate the inequality satisfied by hj

(3.11) ∆hj = ∆ ln(fj) =
∆fj
fj

− |∇fj |2

f2
j

.

Applying (3.3), we obtain an elliptic inequality satisfied by hj

∆hj + |∇hj |2 ≤
1

2j
.(3.12)

Proposition 3.4. Let Mj = (T3, gj) as in (3.1). Let hj := ln(fj). If Rj ≥ −1
j , then

lim
j→∞

∥hj − h̄j∥L2(T2) = 0.

Proof. Since fj is periodic in both variables, hj is as well. So, hj may be thought of as a smooth
function on a flat 2-torus. Integrating (3.12) we find

(3.13)
ˆ
T2

(
∆hj + |∇hj |2

)
dA ≤

ˆ
T2

1

2j
dA

which then becomes

(3.14)
ˆ
T2

|∇hj |2 dA ≤ 1

2j
|T2|

So,

(3.15)
ˆ
T2

|∇hj |2 → 0

as j → ∞.
Applying the Poincaré-Wirtinger inequality with constant CT2 from T2, we find that

(3.16) ∥hj − h̄j∥2L2(T2) =

ˆ
T2

|hj − h̄j |2 dA ≤ C2
T2

ˆ
T2

|∇hj |2 dA → 0, as j → ∞,

thus establishing the claim and finishing the proof. □
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After (3.10) we are naturally inclined to investigate whether the averages h̄j can get arbitrarily
small as well. In order to argue that this does not happen we will show in Lemma 3.6 that there is
subsequential W 1,1 convergence of fj to its average and moreover subsequential W 1,2 convergence
of hj to its average on a subsequence with an accompanying lower bound on h̄j .

3.4. W 1,1 Convergence of fj . Our goal in this section is to show W 1,1 convergence of fj . Before
we proceed with that goal we will first establish a uniform Lp bound, p > 2, for the sequence.

Proposition 3.5. Let Mj = (T3, gj) as in (3.1). Let Rj ≥ −1
j , Vol(Mj) ≤ V0, and MinA(Mj) ≥

A0 > 0. Then for each fixed p > 2 there exists a Cp > 0 so thatˆ
T2

fp
j ≤ Cp.(3.17)

Proof. Let hj = ln(fj). By the Moser-Trudinger inequality on a compact Riemann surface (see [Yan07,
Theorem 1.1(1)] with α = 0), we find

ˆ
[−π,π]2

e

(hj−h̄j)
2

c2∥∇hj∥2L2([−π,π]2) dxdy ≤ 4π2.(3.18)

Since c∥∇hj∥L2([−π,π]2) ≤ cj where cj is decreasing so that cj → 0 as j → ∞, we can rewrite (3.18)
as

ˆ
[−π,π]2

e

(ln(fj)−ln(fj))
2

c2
j dxdy =

ˆ
[−π,π]2

e

(ln(fj f̄−1
j

))
2

c2
j dxdy ≤ 4π2.(3.19)

If we specifically look at the set {| ln(fj/fj)| ≥ 1} then we find

ˆ
{| ln(fj f̄−1

j )|≥1}
e
|ln(fj f̄−1

j )|
cj dxdy ≤

ˆ
{| ln(fj f̄−1

j )|≥1}
e

(ln(fj f̄−1
j

))
2

c2
j dxdy ≤ 4π2,(3.20)

and if we further restrict to the set where {ln(fj f̄−1
j ) ≥ 1} we find

ˆ
{ln(fj f̄−1

j )≥1}
(fj f̄

−1
j )

1
cj dxdy =

ˆ
{ln(fj f̄−1

j )≥1}
e

ln(fj f̄
−1
j

)

cj dxdy ≤ 4π2,(3.21)

which implies (ˆ
{ln(fj f̄−1

j )≥1}
(fj f̄

−1
j )

1
cj dxdy

)cj

≤ (4π)2cj .(3.22)

Now notice that where −∞ < ln(fj f̄
−1
j ) ≤ 1 we know 0 < fj f̄

−1
j ≤ e and hence(ˆ

{−∞<ln(fjfj f̄
−1
j )≤1}

(fj f̄
−1
j )

1
cj dxdy

)cj

≤

(ˆ
[−π,π]2

(e)
1
cj dxdy

)cj

≤ (4π)2cje,(3.23)

which implies

∥fj f̄−1
j ∥

L
c−1
j ([−π,π]2)

=

(ˆ
[0,π]2

(fj f̄
−1
j )

1
cj dxdy

)cj

≤ (e+ 1)(4π)2cj ≤ (e+ 1)(4π)2c1 .(3.24)

This is equivalent to

∥fj∥
L
c−1
j ([−π,π]2)

≤ f̄j(e+ 1)(4π)2cj ≤ f̄j(e+ 1)(4π)2c1 .(3.25)

Since
´
[−π,π]2 fjdxdy =

Vol(Mj)
2π ≤ V0

2π , f̄j ≤ V0
8π3 , and c−1

j → ∞ as j → ∞ the result follows. □
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We now use this newly found control on hj and fj to find W 1,1 convergence of fj and W 1,2

convergence of hj .

Lemma 3.6. Let Mj = (T3, gj) as in (3.1). Let Rj ≥ −1
j , Vol(Mj) ≤ V0, and MinA(Mj) ≥ A0 >

0. Then, for some constant f∞ ∈ (0,∞) and some subsequence fjk , fjk → f∞ ∈ (0,∞) in W 1,1.
Similarly, if hj := ln(fj), then for some subsequence and some constant h∞ ∈ R, hjk → h∞ in
W 1,2.

Proof. Let hj := ln(fj). By (3.15),

(3.26)
ˆ
T2

|∇fj |2

f2
j

dA =

ˆ
T2

|∇hj |2 dA → 0, as j → ∞

Now we calculate
ˆ
T2

|∇fj | dA =

ˆ
T2

|∇fj |
fj

fj dA(3.27)

≤

(ˆ
T2

|∇fj |2

f2
j

dA

)1/2(ˆ
T2

f2
j dA

)1/2

(3.28)

≤ C0

(ˆ
T2

|∇fj |2

f2
j

dA

)
→ 0(3.29)

Where the L2 upper bound on fj comes from Proposition 3.5.
Then by Lemma 3.3 combined with the the uniform bound on ∥fj∥L1 = Vol(Mj) ≤ V0, we have

that f̄j = 1
|T2|
´
T2 fjdA is uniformly bounded above and below by positive constants and so some

subsequence f̄jk converges to a constant f̄∞. Then, by using the Poincaré inequality we find

(3.30)
ˆ
T2

|∇fjk | dA ≥
ˆ
T2

|fjk − f̄jk | dA

which gives the convergence of fjk → f̄∞ ∈ (0,∞) in L1. Since ∇f̄∞ ≡ 0, we in fact have that
fjk → f̄∞ in W 1,1. After relabelling f̄∞ by f∞, we conclude the first part of this lemma.

Similarly, we find that hjk → h∞ ∈ R in W 1,2. Since fjk → f̄∞ ∈ (0,∞) in L1, we can
choose a further subsequence so that fjk → f̄∞ ∈ (0,∞) pointwise almost everywhere. Thus,
hjk → h∞ := ln(f̄∞) pointwise almost everywhere.

By Egorov’s theorem, for each ϵ > 0, there is a measurable subset Aϵ ⊆ T2 such that Vol(Aϵ) < ϵ
and hjk converges uniformly on T2 \ Aϵ. In particular, there exists k0 > 0 such that for all k > k0,
hjk > h∞ − 1 everywhere on T2 \Aϵ.

First, we note that supk h̄jk < ∞ by (3.10). Now, we will show that lim infk→∞ h̄jk > −∞.
Suppose not. That is, suppose that there is a further subsequence hjk such that limk→∞ h̄jk = −∞.
Then, in particular, there would exist k1 > 0 such that h̄jk < h∞ − 2 for all k > k1. So, for
k > max(k0, k1),

ˆ
T2

|hjk − h̄jk |
2 dA =

ˆ
T2\Aϵ

|hjk − h̄jk |
2 dA+

ˆ
Aϵ

|hjk − h̄jk |
2 dA(3.31)

≥
ˆ
T2\Aϵ

|hjk − h̄jk |
2 dA(3.32)

(3.33)
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Since k > max(k0, k1), we have both that hjk > h∞ − 1 on T2 \ Aϵ and that h̄jk < h∞ − 2, which
implies that |hjk − h̄jk | > 1 on T2 \Aϵ. Hence, by continuing the estimate in (3.33) we findˆ

T2

|hjk − h̄jk |
2 dA ≥

ˆ
T2\Aϵ

1 dA(3.34)

= Vol(T2)−Vol(Aϵ)(3.35)

= Vol(T2)− ϵ(3.36)

Since ϵ was arbitrary, we find a contradiction with Proposition 3.4. Thus,

lim inf
k→∞

h̄jk > −∞.

Thus, we find that there exists a C > 0 so that −∞ < −C ≤ h̄jk ≤ C < ∞. Combined with
Proposition 3.4, we have that hjk → h∞ ∈ R in L2 along a subsequence. Combined with (3.26), we
find that hj subsequentially converges to h∞ ∈ R in W 1,2. □

3.5. C0 Convergence from Below. Now, we have from Lemma 3.6 that on some subsequence, fj
converges in W 1,1 to a positive constant. We would like to use this to show convergence of Mj , as
in (3.1), to a flat torus. It was shown in [All21] that if the warping functions are bounded in Lp for
p > 2 (or equivalently the metrics bounded in L

p
2 ), volume converges, and the distance function is C0

converging from below, then the sequence is converging in the uniform, GH, and SWIF sense. We will
first show the C0 convergence from below by using a maximum principle argument on the operator
Lf = ∆f + |∇f |2. By the inequality in equation (3.12) we expect to be able to bound the minimum
of hj using the maximum principle as we now proceed to do.

Lemma 3.7. Let Mj = (T3, gj) as in (3.1). Let Rj ≥ −1
j . Let hj := ln(fj). Then, for Ω =

[η1, η2]× S1 ⊂ T2 = −[π, π]× [−π, π], we have

(3.37) min
Ω

hj ≥ min
∂Ω

hj − (eγjη2 − eγjη1)

where γj =
√

C
2j .

Proof. Consider the function hj − eγjθ1 , θ1 ∈ [η1, η2], γj > 0, and compute

L(hj − eγjθ1) = ∆(hj − eγjθ1) + |∇(hj − eγjθ1)|2(3.38)

= ∆(hj − eγjθ1) + |∇hj |2 − 2⟨∇hj ,∇eγjθ1⟩+ |∇eγjθ1 |2(3.39)

= L(hj)− 2⟨∇(hj − eγjθ1),∇eγjθ1⟩ − |∇eγjθ1 |2 −∆eγjθ1 .(3.40)

Thus, we obtain the identity

L(hj − eγjθ1) + 2⟨∇(hj − eγjθ1),∇eγjθ1⟩ = L(hj)− |∇eγjθ1 |2 −∆eγjθ1 ,(3.41)

whose right-hand side can be bounded as follows, using (3.12),

L(hj)− |∇eγjθ1 |2 −∆eγjθ1 ≤ 1

2j
− γ2j (e

2γjθ1 + eγjθ1) ≤ 1

2j
− γ2jC

′ ≤ 0,(3.42)

where we uniformly bound the exponential terms independent of j and choose γj =
√

C
2j for some C

independent of j so that the last inequality holds. Then, by the minimum principle, we know that the
minimum must be obtained on the boundary, i.e.

min
Ω

hj − eγjη1 ≥ min
Ω

(
hj − eγjθ1

)
≥ min

∂Ω

(
hj − eγjθ1

)
≥ min

∂Ω
hj − eγjη2 .(3.43)

□

Now in order to effectively use Lemma 3.7 we must be able to control hj on ∂Ω and so now we
obtain this control for a subsequence.
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Lemma 3.8. If hj → h∞ in W 1,2(T2) and if hȳj (x) := hj(x, ȳ) for ȳ ∈ [−π, π], then for some
subsequence, hȳjk(x) → h∞ in C0([−π, π]), for almost every ȳ ∈ [−π, π].

Proof. Since for some subsequence, hjk → h∞ in W 1,2(T2), we know that

(3.44)
ˆ π

−π

(ˆ π

−π
|hj − h∞|2 +

∣∣∣∣∂hj∂x

∣∣∣∣2 + ∣∣∣∣∂hj∂y

∣∣∣∣2 dx
)
dy −→ 0,

as j → ∞, but this implies that

(3.45)
ˆ π

−π
|hȳjk − h∞|2 +

∣∣∣∣∣∂h
ȳ
jk

∂x

∣∣∣∣∣
2

dx −→ 0

for a.e. ȳ ∈ [−π, π], as k → ∞. This means that hȳjk → h∞ in W 1,2([−π, π]) and so, by Morrey’s
inequality, we find that hȳjk → h∞ in C0, for almost every ȳ ∈ [−π, π], as desired. □

By combining Lemma 3.7 with Lemma 3.8 we obtain C0 control from below.

Corollary 3.9. Let Mj = (T3, gj) as in (3.1). Let Rj ≥ −1
j , Vol(Mj) ≤ V0, and MinA(Mj) ≥

A0 > 0. Let hj := ln(fj). Then, after passing to a subsequence, we have the inequality

hjk ≥ h∞ − C

k
(3.46)

on T2, from which we deduce

fjk ≥ f∞ − C̄

k
,(3.47)

again on T2.

Proof. We may apply Lemma 3.6, which allows us to apply Lemma 3.8. So, we know that if we
define hȳj (x) = hj(x, ȳ), for ȳ ∈ [−π, π], we find that hȳjk(x) → h∞ in C0([−π, π]), for almost every
ȳ ∈ [−π, π]. We can pick a η1, η2 ∈ [−π, π] so that we get the desired C0 convergence on S1 × {η1}
and S1 × {η2}. Now we can apply Lemma 3.7 on S1 × [η1, η2] and S1 × [η2, η1 + 2π] in order to
achieve the desired bound (3.46). Exponentiating both sides of (3.46),

fk ≥ eln(f∞)−C
k = f∞e

−C
k ,(3.48)

gives the desired bound for f . □

3.6. SWIF Convergence to a Flat Tori. We are now able to conclude with the proof of our main
theorem.

Proof of Theorem 0.3. The C0-bound from below given in Corollary 3.9 combined with the Lp, p > 2
bound of Proposition 3.5 and the W 1,1-convergence of Lemma 3.6 allows us to apply Theorem 1.4
of [All21] to obtain uniform, GH, and SWIF convergence to a flat torus on a subsequence. Note that
an Lp bound on the warping factor fj is equivalent to an L

p
2 on gj for warped products, which is the

required hypothesis for Theorem 1.4 of [All21]. □
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